始时配置在第1行,以后改变时,顺次选择第2行、第3行、…、直到第n行。当第n行配置也找不到一个合理的配置时,就要回溯,去改变前一列的配置。得到求解皇后问题的算法如下:
{ 输入棋盘大小值n;
m=0;
good=1;
do {
if (good)
if (m==n)
{ 输出解;
改变之,形成下一个候选解;
}
else 扩展当前候选接至下一列;
else 改变之,形成下一个候选解;
good=检查当前候选解的合理性;
} while (m!=0);
}
在编写程序之前,先确定边式棋盘的数据结构。比较直观的方法是采用一个二维数组,但仔细观察就会发现,这种表示方法给调整候选解及检查其合理性带来困难。更好的方法乃是尽可能直接表示那些常用的信息。对于本题来说,“常用信息”并不是皇后的具体位置,而是“一个皇后是否已经在某行和某条斜线合理地安置好了”。因在某一列上恰好放一个皇后,引入一个一维数组(col[ ]),值col[i]表示在棋盘第i列、col[i]行有一个皇后。例如:col[3]=4,就表示在棋盘的第3列、第4行上有一个皇后。另外,为了使程序在找完了全部解后回溯到最初位置,设定col[0]的初值为0当回溯到第0列时,说明程序已求得全部解,结束程序运行。
为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数组:
(1) 数组a[ ],a[k]表示第k行上还没有皇后;
(2) 数组b[ ],b[k]表示第k列右高左低斜线上没有皇后;
(3) 数组 c[ ],c[k]表示第k列左高右低斜线上没有皇后;
棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线上的方格,他们的行号与列号之差均相同。
初始时,所有行和斜线上均没有皇后,从第1列的第1行配置第一个皇后开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时,在数组a[ ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数组a[ ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位置的值都为1来确定。细节见以下程序:
【程序】
# include
# include
# define MAXN 20
int n,m,good;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
void main()
{ int j;
char awn;
printf(“Enter n: “); scanf(“%d”,&n);
for (j=0;j<=n;j++) a[j]=1;
for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
m=1; col[1]=1; good=1; col[0]=0;
do {
if (good)
if (m==n)
{ printf(“列\t行”);
for (j=1;j<=n;j++)
printf(“%3d\t%d\n”,j,col[j]);
printf(“Enter a character (Q/q for exit)!\n”);
scanf(“%c”,&awn);
if (awn==’Q’||awn==’q’) exit(0);
while (col[m]==n)
{ m--;
a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
}
col[m]++;
}
else
{ a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0;
col[++m]=1;
}
else
{ while (col[m]==n)
{ m--;
a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;
}
col[m]++;
}
good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]];
} while (m!=0);
}
试探法找解算法也常常被编写成递归函数,下面两程序中的函数queen_all()和函数queen_one()能分别用来解皇后问题的全部解和一个解。
【程序】
# include
# include
# define MAXN 20
int n;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
void main()
{ int j;
printf(“Enter n: “); scanf(“%d”,&n);
for (j=0;j<=n;j++) a[j]=1;
for (j=0;j<=2*n;j++) cb[j]=c[j]=1;
queen_all(1,n);
}
void queen_all(int k,int n)
{ int i,j;
char awn;
for (i=1;i<=n;i++)
if (a[i]&&b[k+i]&&c[n+k-i])
{ col[k]=i;
a[i]=b[k+i]=c[n+k-i]=0;
if (k==n)
{ printf(“列\t行”);
for (j=1;j<=n;j++)
printf(“%3d\t%d\n”,j,col[j]);
printf(“Enter a character (Q/q for exit)!\n”);
scanf(“%c”,&awn);
if (awn==’Q’||awn==’q’) exit(0);
}
queen_all(k+1,n);
a[i]=b[k+i]=c[n+k-i];
}
}
采用递归方法找一个解与找全部解稍有不同,在找一个解的算法中,递归算法要对当前候选解最终是否能成为解要有回答。当它成为最终解时,递归函数就不再递归试探,立即返回;若不能成为解,就得继续试探。设函数queen_one()返回1表示找到解,返回0表示当前候选解不能成为解。细节见以下函数。
【程序】
# define MAXN 20
int n;
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
int queen_one(int k,int n)
{ int i,found;
i=found=0;
While (!found&&i { i++;
if (a[i]&&b[k+i]&&c[n+k-i])
{ col[k]=i;
a[i]=b[k+i]=c[n+k-i]=0;
if (k==n) return 1;
else
found=queen_one(k+1,n);
a[i]=b[k+i]=c[n+k-i]=1;
}
}
return found;
}
六、贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。
【问题】 装箱问题
问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。
若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{ 输入箱子的容积;
输入物品种数n;
按体积从大到小顺序,输入各物品的体积;
预置已用箱子链为空;
预置已用箱子计数器box_count为0;
for (i=0;i { 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一个箱子,并将物品i放入该箱子;
box_count++;
}
else
将物品i放入箱子j;
}
}
上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。
若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。
【程序】
# include
# include
typedef struct ele
{ int vno;
struct ele *link;
} ELE;
typedef struct hnode
{ int remainder;
ELE *head;
Struct hnode *next;
} HNODE;
void main()
{ int n, i, box_count, box_volume, *a;
HNODE *box_h, *box_t, *j;
ELE *p, *q;
Printf(“输入箱子容积\n”);
Scanf(“%d”,&box_volume);
Printf(“输入物品种数\n”);
Scanf(“%d”,&n);
A=(int *)malloc(sizeof(int)*n);
Printf(“请按体积从大到小顺序输入各物品的体积:”);
For (i=0;i Box_h=box_t=NULL;
Box_count=0;
For (i=0;i { p=(ELE *)malloc(sizeof(ELE));
p->vno=i;
for (j=box_h;j!=NULL;j=j->next)
if (j->remainder>=a[i]) break;
if (j==NULL)
{ j=(HNODE *)malloc(sizeof(HNODE));
j->remainder=box_volume-a[i];
j->head=NULL;
if (box_h==NULL) box_h=box_t=j;
else box_t=boix_t->next=j;
j->next=NULL;
box_count++;
}
else j->remainder-=a[i];
for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);
if (q==NULL)
{ p->link=j->head;
j->head=p;
}
else
{ p->link=NULL;
q->link=p;
}
}
printf(“共使用了%d只箱子”,box_count);
printf(“各箱子装物品情况如下:”);
for (j=box_h,i=1;j!=NULL;j=j->next,i++)
{ printf(“第%2d只箱子,还剩余容积%4d,所装物品有;\n”,I,j->remainder);
for (p=j->head;p!=NULL;p=p->link)
printf(“%4d”,p->vno+1);
printf(“\n”);
}
}
【问题】 马的遍历
问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(i,j)方格,下一个可能的位置依次为(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。
4 3
5 2
马
6 1
7 0
对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(i,j)只有三个出口,他们是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为4、2、3,则程序就选择让马走向(i-2,j+1)位置。
由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start增1,重新找解。细节以下程序。
【程序】
# include
int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};
int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};
int board[8][8];
int exitn(int i,int j,int s,int a[ ])
{ int i1,j1,k,count;
for (count=k=0;k<8;k++)
{ i1=i+delta_i[(s+k)%8];
j1=i+delta_j[(s+k)%8];
if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)
a[count++]=(s+k)%8;
}
return count;
}
int next(int i,int j,int s)
{ int m,k,mm,min,a[8],b[8],temp;
m=exitn(i,j,s,a);
if (m==0) return –1;
for (min=9,k=0;k { temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b);
if (temp { min=temp;
kk=a[k];
}
}
return kk;
}
void main()
{ int sx,sy,i,j,step,no,start;
for (sx=0;sx<8;sx++)
for (sy=0;sy<8;sy++)
{ start=0;
do {
for (i=0;i<8;i++)
for (j=0;j<8;j++)
board[i][j]=0;
board[sx][sy]=1;
I=sx; j=sy;
For (step=2;step<64;step++)
{ if ((no=next(i,j,start))==-1) break;
I+=delta_i[no];
j+=delta_j[no];
board[i][j]=step;
}
if (step>64) break;
start++;
} while(step<=64)
for (i=0;i<8;i++)
{ for (j=0;j<8;j++)
printf(“%4d”,board[i][j]);
printf(“\n\n”);
}
scanf(“%*c”);
}
}
七、分治法
1、分治法的基本思想
任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题
2、分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:
(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
3、分治法的基本步骤
分治法在每一层递归上都有三个步骤:
(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
(3)合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide_and_Conquer(P)
if |P|≤n0
then return(ADHOC(P))
将P分解为较小的子问题P1、P2、…、Pk
for i←1 to k
do
yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
T ← MERGE(y1,y2,…,yk) △