首页>计算机职称>复习指导>正文
计算机职称考试:软件水平考试常用算法设计方法

www.zige365.com 2008-7-14 17:13:41 点击:发送给好友 和学友门交流一下 收藏到我的会员中心

ble tv)
  { int k;
   /*考虑物品i包含在当前方案中的可能性*/
   if (tw+a[i].weight<=limitW)
   { cop[i]=1;
   if (i   else
   { for (k=0;k   option[k]=cop[k];
   maxv=tv;
   }
   cop[i]=0;
  }
   /*考虑物品i不包含在当前方案中的可能性*/
   if (tv-a[i].value>maxV)
   if (i   else
   { for (k=0;k   option[k]=cop[k];
   maxv=tv-a[i].value;
   }
  }
  
  void main()
  { int k;
   double w,v;
   printf(“输入物品种数\n”);
   scanf((“%d”,&n);
   printf(“输入各物品的重量和价值\n”);
   for (totv=0.0,k=0;k   { scanf(“%1f%1f”,&w,&v);
   a[k].weight=w;
   a[k].value=v;
   totV+=V;
   }
   printf(“输入限制重量\n”);
   scanf(“%1f”,&limitV);
   maxv=0.0;
   for (k=0;k   find(0,0.0,totV);
   for (k=0;k   if (option[k]) printf(“%4d”,k+1);
   printf(“\n总价值为%.2f\n”,maxv);
  }
   作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。
  【程序】
  # include
  # define N 100
  double limitW;
  int cop[N];
  struct ele { double weight;
   double value;
   } a[N];
  int k,n;
  struct { int flg;
   double tw;
   double tv;
   }twv[N];
  void next(int i,double tw,double tv)
  { twv[i].flg=1;
   twv[i].tw=tw;
   twv[i].tv=tv;
  }
  double find(struct ele *a,int n)
  { int i,k,f;
   double maxv,tw,tv,totv;
   maxv=0;
   for (totv=0.0,k=0;k   totv+=a[k].value;
   next(0,0.0,totv);
   i=0;
   While (i>=0)
   { f=twv[i].flg;
   tw=twv[i].tw;
   tv=twv[i].tv;
   switch(f)
   { case 1: twv[i].flg++;
   if (tw+a[i].weight<=limitW)
   if (i   { next(i+1,tw+a[i].weight,tv);
   i++;
   }
   else
   { maxv=tv;
   for (k=0;k   cop[k]=twv[k].flg!=0;
   }
   break;
   case 0: i--;
   break;
   default: twv[i].flg=0;
   if (tv-a[i].value>maxv)
   if (i   { next(i+1,tw,tv-a[i].value);
   i++;
   }
   else
   { maxv=tv-a[i].value;
   for (k=0;k   cop[k]=twv[k].flg!=0;
   }
   break;
   }
   }
   return maxv;
  }
  
  void main()
  { double maxv;
   printf(“输入物品种数\n”);
   scanf((“%d”,&n);
   printf(“输入限制重量\n”);
   scanf(“%1f”,&limitW);
  printf(“输入各物品的重量和价值\n”);
   for (k=0;k   scanf(“%1f%1f”,&a[k].weight,&a[k].value);
   maxv=find(a,n);
   printf(“\n选中的物品为\n”);
  for (k=0;k   if (option[k]) printf(“%4d”,k+1);
   printf(“\n总价值为%.2f\n”,maxv);
  }

  五、回溯法

   回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。

  1、回溯法的一般描述

  可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

  解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。

  我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(jj。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

  回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造:

  设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。

   因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。

   在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。

  【问题】 组合问题
  问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。
  例如n=5,r=3的所有组合为:
  (1)1、2、3 (2)1、2、4 (3)1、2、5
   (4)1、3、4 (5)1、3、5 (6)1、4、5
   (7)2、3、4 (8)2、3、5 (9)2、4、5
   (10)3、4、5
  则该问题的状态空间为:
  E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}
  约束集为: x1   显然该约束集具有完备性。
  问题的状态空间树T:
 
  2、回溯法的方法

   对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为:

   从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。

  在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。

   例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。

  3、回溯法的一般流程和技术

   在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程:
  
  在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。
  例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。

  【问题】 组合问题
  问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。
  采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:
  (1) a[i+1]>a[i],后一个数字比前一个大;
  (2) a[i]-i<=n-r+1。
  按回溯法的思想,找解过程可以叙述如下:

   首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:
  【程序】
  # define MAXN 100
  int a[MAXN];
  void comb(int m,int r)
  { int i,j;
   i=0;
   a[i]=1;
   do {
   if (a[i]-i<=m-r+1
   { if (i==r-1)
   { for (j=0;j   printf(“%4d”,a[j]);
   printf(“\n”);
   }
   a[i]++;
   continue;
   }
   else
   { if (i==0)
   return;
   a[--i]++;
   }
   } while (1)
  }
  
  main()
  { comb(5,3);
  }
  【问题】 填字游戏
  问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。

  可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。

  为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。
  回溯法找一个解的算法:
  { int m=0,ok=1;
   int n=8;
   do{
   if (ok) 扩展;
   else 调整;
   ok=检查前m个整数填放的合理性;
   } while ((!ok||m!=n)&&(m!=0))
   if (m!=0) 输出解;
   else 输出无解报告;
  }
  如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下:
  回溯法找全部解的算法:
  { int m=0,ok=1;
   int n=8;
   do{
   if (ok)
  { if (m==n)
  { 输出解;
  调整;
  }
  else 扩展;
   }
   else 调整;
   ok=检查前m个整数填放的合理性;
   } while (m!=0);
  }
  为了确保程序能够终止,调整时必须保证曾被放弃过的填数序列不会再次实验,即要求按某种有许模型生成填数序列。给解的候选者设定一个被检验的顺序,按这个顺序逐一形成候选者并检验。从小到大或从大到小,都是可以采用的方法。如扩展时,先在新位置填入整数1,调整时,找当前候选解中下一个还未被使用过的整数。将上述扩展、调整、检验都编写成程序,细节见以下找全部解的程序。
  【程序】
  # include
  # define N 12
  void write(int a[ ])
  { int i,j;
   for (i=0;i<3;i++)
   { for (j=0;j<3;j++)
   printf(“%3d”,a[3*i+j]);
   printf(“\n”);
   }
   scanf(“%*c”);
  }
  
  int b[N+1];
  int a[10];
  int isprime(int m)
  { int i;
   int primes[ ]={2,3,5,7,11,17,19,23,29,-1};
   if (m==1||m%2=0) return 0;
   for (i=0;primes[i]>0;i++)
   if (m==primes[i]) return 1;
   for (i=3;i*i<=m;)
   { if (m%i==0) return 0;
   i+=2;
   }
   return 1;
  }
  
  int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1},
   {2,4,-1},{3,-1},{4,6,-1},{5,7,-1}};
  int selectnum(int start)
  { int j;
   for (j=start;j<=N;j++)
   if (b[j]) return j
   return 0;
  }
  
  int check(int pos)
  { int i,j;
   if (pos<0) return 0;
   for (i=0;(j=checkmatrix[pos][i])>=0;i++)
   if (!isprime(a[pos]+a[j])
   return 0;
   return 1;
  }
  
  int extend(int pos)
  { a[++pos]=selectnum(1);
   b[a][pos]]=0;
   return pos;
  }
  
  int change(int pos)
  { int j;
   while (pos>=0&&(j=selectnum(a[pos]+1))==0)
   b[a[pos--]]=1;
   if (pos<0) return –1
   b[a[pos]]=1;
   a[pos]=j;
   b[j]=0;
   return pos;
  }
  
  void find()
  { int ok=0,pos=0;
   a[pos]=1;
   b[a[pos]]=0;
   do {
   if (ok)
   if (pos==8)
   { write(a);
   pos=change(pos);
   }
   else pos=extend(pos);
   else pos=change(pos);
   ok=check(pos);
   } while (pos>=0)
  }
  
  void main()
  { int i;
   for (i=1;i<=N;i++)
   b[i]=1;
   find();
  }
  【问题】 n皇后问题
  问题描述:求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局。
   这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线4个方向相互捕捉。如图所示,一个皇后放在棋盘的第4行第3列位置上,则棋盘上凡打“×”的位置上的皇后就能与这个皇后相互捕捉。
  
  1 2 3 4 5 6 7 8
   × ×
  × × ×
   × × ×
  × × Q × × × × ×
   × × ×
  × × ×
   × ×
   × ×
  从图中可以得到以下启示:一个合适的解应是在每列、每行上只有一个皇后,且一条斜线上也只有一个皇后。
   求解过程从空配置开始。在第1列至第m列为合理配置的基础上,再配置第m+1列,直至第n列配置也是合理时,就找到了一个解。接着改变第n列配置,希望获得下一个解。另外,在任一列上,可能有n种配置。开

本新闻共4页,当前在第2页  1  2  3  4  

我要投稿 新闻来源: 编辑: 作者:
相关新闻
北京08专业技术人员计算机职称准考证打印
2008年宣州区职称计算机应用能力免试通知
专业人员计算机应用能力考试所有科目必须过关
职称计算机考试每年有四次
2008年7月辽宁全国计算机应用能力考试通知
江西上饶市信州区开展计算机应用能力统一考试