6.个人客户评分方法
个人客户评分方法
按照国际惯例,对于企业的信用评定采用评级方法,而对个人客户的信用评定采用评分方法。由于个人客户数量众多,历史信息的规律性强,因此主要采用基于历史数据统计的评分模型计量个人客户的信用风险。
参照国际最佳实践,个人客户评分按照所采用的统计方法可以分为回归分析、K临近值、神经网络模型等;按照评分的对象可以分为客户水平、产品水平和账户水 平,按照评分的目的可以分为风险评分、利润评分、忠诚度评分等;按照平分的阶段则可以分为拓展客户期(信用局评分)、审批客户期(申请评分)和管理客户期 (行为评分)。
(1)信用局评分
这一阶段常用的模型有:
①风险评分,预测消费者违约/坏账风险的大小;
②收益评分,预测消费者开户后给商业银行带来潜在收益;
③破产评分,预测消费者破产风险的大小;
④其他信用特征评分。
(2)申请评分
申请评分模型通过综合考虑申请者在申请表上所填写的各种信息,对照商业银行类似申请者开户后的信用表现,以评分来预测申请者开户后一定时期内违约概率,通过比较该客户的违约概率和商业银行可以接受的违约底线来作出拒绝或接受的决定。
信用局风险评分模型和收益评分模型是很有价值的决策工具,与申请评分模型具有互补性,可以组成二维或三维矩阵来进行信贷审批决策。不同的是,申请评分模 型是商业银行为特定金融产品的申请者量身定做的,能够更准确、全面地反映商业银行客户的特殊性,而且可以利用更多的信息对客户将来的信用表现进行预测;而 信用局评分模型通常是对申请者在未来各种信贷关系中的违约概率作出预测。
(3)行为评分
行为评分被用来观察现有客户的行为,以掌握客户及时还款的可信度。