参考椭球面是一国家(或者一区域)大地测量计算的参考面,该椭球面上各点与大地水准面上各相应点之间的高差的平方和为最小,参考椭球中心与地球质心重合,旋转轴与地球自转轴重合,赤道面重合,两者体积相等,总质量与地球总质量相等,自转角速度相等。
2.2.2 高斯平面直角坐标系 公路线路尤其是高速公路一般跨越多个地区,绵延数百里,为了坐标系统的统计以及与国家其它工程衔接,目前普遍采用国家坐标系换带计算方法。即高斯正形投影平面直接坐标系。①高斯正形投影的实质 设想将一个截面为椭圆的横柱(简称圆柱)面套在地球椭球面上,使横圆柱面与椭球面的一个子午椭圆相切,横圆柱的轴与地球椭球的轴互相垂直,这样将靠近子午椭圆的那部分地球表面的图形投影到圆柱面上,再将圆柱面展开就得到平面上的图形。这种投影,实际上就是将地球椭球面上与柱面相切的子午线两旁的一条带状区域按正形规律投影到平面上,投影后,只有相切的这条子午线上的长度比等于1,而离开这条子线愈远,长度变形愈大,相切的子午线称为中央子午线,这一带区两旁边缘上的子午线叫分界子午线,地球上的D点投影到平面上成为d点,d点的坐标可用x和y表示。②坐标分带 为了不使这种变形过大,每一个带的宽度不能太大,一般每带分界子午线间的经度分为6°(或3°)为便于设计施工放样,使坐标反算长度与实地长度差不超过规范要求而不影响施工质量时,采用平移子午线的方式进行坐标换带计算,这一点在公路工程测量中是经常遇到的,通常称坐标系统的选择。
2.3 控制网建立方法 平面:采用先四等控制,后一级导线公路为线状物,四等控制普遍采用GPS测量,它的特点是:①定位精度高②观测时间短③测站间无需通视④可提供三维坐标⑤操作简便⑥全天候作业。
GPS采用测距后方交会的原理,接收机接收卫星测距信号,只需同时获得3颗以上GPS卫星信号,就可利用后方交会的原理解算的绝对坐标,当有两台接收机同时观测相同3颗以上卫星信号时,其基线解算可达10-6精度,然后通过点或边连接,联测到已知高等控点上,经平差计算得到各未知点的坐标。四等点一般以5km左右一对为宜,5km一对是为便于一级导线加密时附合到已知边上,为便于设计及施工放样,一般采用常规仪器(全站仪或测距仪配经纬仪)进行。高程:采用水准仪进行四等高程施测,也可采用严格按规范施行的三角高程代替四等水准方法,附合到三等以上高程控制点。
2.4 独立高等控制 公路工程中首级控制网常采用GPS进行四等控制,为方便施工再利用常规方法进行一级导线的加密,首级控制网往往采用与国家点联测分带换算得到实地任意坐标系统,以控制整体系统的连接及与已有线路进行衔接继而在线路主要控制物如特大桥、长隧道等(为便于施工需进行控制网的布设,这类控制网内部精度要求较线路首级控制高,这时多采用独立网的形式,这种独立网不同于其它独立工程如大坝、枢纽、厂房等一般独立控制网,作为线路整体的一部分,需要与路线进行坐标衔接,坐标系统一致,以便施工过程中保持线路的连续性,控制平差采用独立网自由平差求定长基线后再进行约束平差,然后再对两端一级导线重平差方法。