3.3水灰比
一般情况下认为,材料的组分与配合比中对混凝土抗掺性最具影响力的因素是水灰(胶)比;文献更是总结指出:事实上,在水灰比小于013,特别是掺有硅灰的情况下,混凝土对于水与氯化物来说都可认为是不可渗透的,这样的混凝土可以在下面的暴露条件下工作:(1)高水头压力;(2)需要防止氯化物侵蚀;(3)恶劣的冻融条件存在;(4)需抵抗有害化学品侵蚀。只要将水灰比限制在不超过014,就能够获得渗透性足够低的混凝土,能够抵抗很高的水压力。笔者认为,如果不考虑时间这个因素,文献的这些结论无疑是正确的,但从前面提到的近年来高强与高性能混凝土遭遇到的一些耐久性病害来看,则上述结论难免有偏颇之嫌。配合比设计不仅要考虑新浇筑混凝土的抗渗性能,也要考虑服役期间的工作环境使微裂纹扩展导致抗渗性能劣化的问题;当然这是一个非常复杂的问题,从下面的介绍可以看到,这方面每前进一步都是十分艰难的。
4、服役期间的工作环境使微裂纹扩展导致抗渗性能劣化
前面已经提到,对于混凝土结构而言,并非是仅仅满足了一些外加剂、掺合料及水灰比方面的要求,就能够保证耐久性能。这是因为混凝土在工作中要承受各种荷载和变形;混凝土在荷载、变形和气候作用下,微结构性能会逐步劣化,表面及内部产生微裂纹;而混凝土的开裂通常导致渗流通道相互连接并且增加混凝土的渗透性,这种由于裂纹扩张导致的渗透性的增加使得更多的水和有害化学成分渗入混凝土中,引起混凝土性能的进一步劣化、开裂。这样一个链式反应:劣化———开裂———可渗性增加———进一步劣化,终将导致混凝土结构的毁灭性破坏。ShahandWang根据一个目前仍在进行的广泛研究的初步结果,给出了混凝土微结构、渗透性能、开裂和耐久性之间的关系。指出在耐久混凝土配合比设计中要考虑三个标准:强度、渗透性和抗裂能力.
4.1静载荷下微裂纹扩展对混凝土抗渗性的影响
在定性分析荷载与变形作用对混凝土抗渗性能的影响机理方面,人们是很容易达成共识的。比较权威的观点是:在外加荷载施加之前,在砂浆与骨料界面之间就存在粘结裂缝,在砂浆和骨料本身,也存在微裂纹,但这些微裂纹与粘结裂纹相比是微不足道的;Slate,F1O1,andK1C1Hover1在文献认为:在所施加的荷载不超过极限荷载的30%之前,粘结裂纹的增量可以忽略不计;如果荷载进一步增加,粘结裂纹不论是在宽度还是在长度方面都将随之增加。荷载达到70%~90%极限荷载时,在砂浆内部的微裂纹已经发展延伸,开始连接粘结裂纹;如果是高强混凝土,此时在骨料中也已经开始产生微裂纹;这样就在混凝土内部形成了一个复杂的裂纹网络。T1Hsu等在文献中指出,连续裂纹在混凝土内部的散布延伸导致混凝土体积的增加。这意味着混凝土内部形成了大于毛细管尺寸的内部孔、空隙系统。这将为气体、液体及可溶解固体在混凝土内部迁移提供了潜在的通道。
如此看来,似乎受到载荷作用的混凝土的抗渗性能受到极大地削弱是确定无疑的了。其实不然,定性分析是一回事,要得到为工程界承认的定量的结论又是另一回事。目前不同的研究者根据各自试验结果得到的结论还不十分一致。Samaha,H1R1,andK1C1Hover在文献得出结论,砂浆裂纹发展的严重程度决定了混凝土对水流通过其内部的抵抗能力。当压缩静荷载值小于75%极限荷载时,荷载引起的微裂纹对混凝土的输送性能(transportproperty)的影响不大。当荷载超出此值后,混凝土对水流及离子运动的抵抗能力减小20%左右。Ludirdja,D1,R1L1Berger,andJ1F1Young在文献进行了加载及渗透性试验来评价外荷载造成的混凝土内部损伤。在对试件进行水渗透性试验之前,试件受到90%极限荷载作用;结果表明:虽然此时已经在混凝土内部产生了显著的微裂纹,但水渗透性的增加值却不高。AbdyKermanit对三种配合比的圆柱体试件在应力水平S=0、0.3、0.4、0.5、0.6、017的情况下进行了压缩试验,施压时持荷五分钟,然后对试件进行压力水渗透试验;结果发现:在应力水平为0.4时,混凝土的渗透性最小,应力水平超过014,混凝土渗透性急剧增加,当应力水平从0.4变化到0.7时,渗透系数从小于4×10-13变化到大于5×10-11ms-1.