岩体中的地下水是沿着岩体中的裂隙和洞穴流动的,随着裂隙和洞穴的形态和分布的不同,有脉状裂隙水、网状裂隙水、层状裂隙水、洞穴水等不同的地下水类型。
(2)土的孔隙性
土是一种散体材料,存在孔隙。对于饱和土是固、液两相;对于非饱和土,是固、液、气三相。于是产生了有效压力和孔隙压力;孔隙压力又有孔隙水压力和孔隙气压力。有效应力原理成了土力学区别于一般材料力学的主要标志,在土工计算中产生了总应力法和有效应力法两种原理和方法。在饱和土中,由于孔隙水压力的增长和消散,不同的加荷速率地基承载力不同;是否及时支撑,对软土基坑稳定有不同的表现;渗透系数和地层组合的差别,导致基础沉降速率的差别等等。饱和土中的超静水压力可导致挤土效应,使桩被挤断、挤歪和上浮;地震时的超静水压力导致砂土和粉土液化。非饱和土的孔隙气压力形成基质吸力,基质吸力随着土中含水量的增加而降低,因而是不稳定的。膨胀土和黄土随湿度的增加而强度显著降低,非饱和土基坑雨季容易发生事故,花岗岩残积土边坡暴雨容易发生浅层滑坡,都和基质吸力降低有关。总之,把握好孔隙压力是岩土工程的重要关键。
4对自然条件的依赖性和条件的不确知性
岩土工程作为土木工程的分支,是以传统力学为基础发展起来的。但很快发现,单纯的力学计算不能解决实际问题。原因主要在于对自然条件的依赖性和计算条件的不确知性。试与结构设计比较,结构工程师面临的材料是混凝土、钢材等人工制造的材料,材质相对均匀,材料和结构都是由工程师在设计时选定,是可控的,计算条件十分明确,因而建立在力学基础上的计算是可信的。而岩土,无论材料还是结构,都是自然形成,不能由工程师选定和控制,只能通过勘察查明而又不可能完全查明。因而存在条件的不确知性和参数的不确定性,不同程度地存在计算条件的模糊性和的不完全性。因而虽然岩土工程计算方法取得了长足进步,发挥了重要作用,但由于计算假定、计算模式、计算参数与实际之间存在很多差别,计算结果与工程实际之间总存在或多或少的差别,需要岩土工程师综合判断。“不求计算精确,只求判断正确”,强调概念设计,已是岩土工程界的共识。
5参数的不确定性和测试方法的多样性
同一岩土体测试数据的离散性有两方面的原因,一是由于取样、运输、样品制备,试验操作等环节的扰动,试验、计算等产生的误差,使测试数据呈随机分布,这方面产生的不确定性与混凝土、钢材等测试数据的随机性质基本相同,只是变异性更大。二是岩土测试数据还和样品的位置有关,这是其他工程材料不具备的特性。自然界的岩土,即使是同一层,其性质也是有差别的。既有规律性的水平相变和竖向相变,也有无规律的指标离散。因此,个别样品测试的指标一般缺乏代表性,必须有一定数量的测试指标,经统计分析,才能得到代表值。结构设计注重截面计算,而岩土工程分析没有截面计算,注重系统分析。被分析的岩土体的尺寸与试验样品的尺寸比较,要大许多倍,因而考虑的是岩土体参数值的综合水平,所以标准值的计算方法与混凝土、钢材等是不同的。结构截面可靠度的分析已基本成熟,并已列入规范;而岩土工程的可靠度分析尚处在研究阶段,由于问题复杂,积累不足,尚难在工程中普遍应用。
岩土工程的测试可以分为室内试验、原位测试和原型监测三大类,还有各种模型试验,极为多样,各有各的特点和用途。同一种参数,又因测试方法不同而得出不同的成果数据。选用合理的测试方法成为岩土工程计算能否达到预期效果的重要环节。例如土的模量有压缩模量、变形模量、旁压模量、反演模量。土的抗剪强度室内试验有直剪和三轴剪;直剪又有快剪、固结快剪和慢剪;三轴剪又有不固结不排水剪、固结不排水剪、固结排水剪和固结不排水剪测孔隙水压力;原位测试有十字板剪切试验和野外大型剪切试验。由于试验条件不同,试验结果各异。用哪种试验方法合理,由岩土工程师根据具体条件确定。这种测试方法的多样性,也是岩土工程区别于其他工程技术一个重要特点。岩土工程分析计算时注意计算模式、计算参数和安全度的配套,而其中计算参数的正确选定最为重要。