09年岩土工程师经验交流-某桥628m跨钢箱梁斜拉桥的关键施工工艺2
|
|
|
|
|
南京长江二桥的水面进索方法是建立在受力分析和全面布置基础上的。其设施主要由四大部分构成,一是放索体系,二是牵引和张拉体系,三是连接体系,四是护索体系。放索体系由载索船、船上放索架、架上索盘、盘上斜拉索等组成;牵引体系由牵引件即钢丝绳、钢绞线或拉杆穿过套筒的卷扬机、连续千斤顶、张拉千斤顶及牵引钢丝绳绕过塔顶固定转向轮的卷扬机等组成;连接体系包括钢丝绳与斜拉索冷铸锚头、钢丝绳与拉杆、拉杆与锚头、拉杆与拉杆、钢绞线与拉杆、钢绞线与钢丝绳等之间的接头及钢丝绳与斜拉索的连接夹具、临时锚固连续千斤顶钢绞线的开合法兰及临时锚固拉杆的开合螺母等构件,张拉体系由张拉千斤顶、拉杆、反力架、油泵等组成;护索体系由转向轮、拉索托轮、防磨轮胎等设施组成。该方法施工要点是: (l)保护放索体系的稳定。本桥对船体、索盘转动、索在桥下空中的稳定都采取了重要措施; (2)保证牵引和连接体系的安全。长索必须在下端先锚固后,采用卷扬机、连续千斤顶、张拉千斤顶接力的方法牵引。在包括连接件在内的斜拉索进入套筒口过程中,通过过塔顶的卷扬机钢丝绳调节,确保连接钢绞线、拉杆及斜拉索钱头与套筒之间的平行.严防磨擦损伤; (3)保证护索体系的实效性。 本桥斜拉索的牵引施工在沿用以往成熟工艺的基础上,针对本桥的特点又重点克服了以下三个难点: 1.解决空间索面斜拉索牵引过程中的拉索防护问题。 空间索面斜拉索被拖过桥面的状态,不像直索面那样有固定的直线线路,它在通过桥面悬臂端时需要设置运转灵活的平、竖面的且使拉索保持小弯曲状态的转向装置;在斜向滑过桥面时还要设置位置不固定的防磨损支垫系统,以保证它不受损伤。针对上述两方面的需要,大直径空间转向装置和轮胎支垫体系被采用,使牵索施工简便、顺畅,并有效地防止了斜拉索的破损和钢箱梁表面的磨损。 2.解决牵索过程中索盘转动不匀问题 由于卷在索盘上的桥面固定端冷铸锚头的重量的存在,必然会造成牵索过程中索盘的突然加速转动。这种突发转动依靠刹车装置往往不能被有效控制,从而使得操作很费劲、缓慢,甚至有时下安全。本次施工采用了对称安装配重件的方法,保证了索盘均匀稳定地转动。 3解决已成桥边跨水面进索的问题 在桥面斜拉索锚固点前方桥下上索能使斜拉索较平顺地上桥,且当斜拉索前端被牵至套筒口附近时,其尾端也已上桥至锚固点附近。但本桥到边跨悬拼至排架位置时,已无法在悬臂端前下方上索。对于岸上辅助跨内的斜拉索,其桥面锚固点已在岸边水域前方很远的滩地区,情况更为不利。本桥采用了在岸边水域桥面侧下方上索方法。采用此方法,有两个难点需要解决。一是斜拉索的平面弯曲变得更复杂了。本桥通过改变转向装置的摆放位置和增设平面限值平滚的方法得以解决;二是当斜拉索上端至套筒口位置时,其下端仍在索盘上,即斜拉索还有很长一部分无法上桥。对于这个问题,本桥采用了使斜拉索在桥面弯曲或跨索塔摆放的解决方法,即当斜拉索上端被牵至套筒口后,在桥面另设卷扬机和夹具牵引斜拉索,使其桥面部分尽量多道小弯曲地平躺至索塔附近,或者使其桥面部分平躺至索塔另一侧。这样增加了桥面容索能力,使斜拉索能够全部上桥。 本桥斜拉索的张拉最大吨位为46Ot,最大张拉吨位的斜拉索采用600t千斤顶张拉。 本桥斜拉索的牵引和张拉施工是非常成功的,施工中所采用的工艺简便实用,安全性高。施工速度快,费用节省,值得推广应用。 八、628m大跨度复杂体系主粱的施工控制和体系转换 对于南京长江二桥628m特大跨度五跨连续这样复杂体系的斜拉桥主梁施工,大悬臂状态下结构线形及内力的控制及合龙过程的体系转换,是施工中难度很大且很关键的工作,它需要采取正确的结构分析理论和方法、规定严密的控制要求确定合理的施工方法和工序、实施严格的施工组织才能确保取得成功。 本桥施工控制的基本思路是,主、边跨钢箱梁悬臂拼装以无索区索塔的下横梁上正中间的钢箱梁块件为基准,辅助跨钢箱梁支撑拼装以过渡墩的永久支座上的钢箱梁块件为基准,各自向着合龙方向逐步进行钢箱梁拼装施工。在拼装过程中,通过跟踪分析,逐步对标高、索力、内力、轴线、对接焊缝进行控制,保证斜拉桥主梁的顺利合龙。 按照施工控制的基本思路,在主梁施工过程中,本桥着重解决了托架和排架上基准块件精确定位、标高与索力及缝宽三者之间的综合控制、主梁轴线控制等主要问题,最终确保了斜拉桥主梁的顺利合龙。 本桥所采用的钢箱梁和斜拉索的安装、合龙段的安装、双悬臂状态临时抗风设施的设置、悬拼过程临时减震机构的设置、边跨永久配重体系的配置、斜拉索两步一次张拉、悬拼匹配等方案、方法,所确定的悬拼、辅助跨拼装、合龙段的安装施工程序等工序,以及严格实施的定位精度、张拉设备标定等控制要求为施工控制的顺利进行提供了充分有力的保证,在国内是少有的。 对于本桥主梁施工中的体系转换,其关键点在于如何在中跨合龙时在主跨结构由单悬臂状态向斜拉桥五跨连续状态转换过程中控制温度变化以保证整个体系转换过程中不出现内力对正在焊接中的合龙段施工质量产生影响。 在以索塔为中心的主梁对称悬拼施工中,为了控制悬拼过程中不平衡重量对索塔所产生的弯转力,本桥在塔中心顺桥向两侧的下横梁边缘处各设置了一排拉压临时支座。其中抗压性能由钢支座提供,钢支座支承在下横梁顶的预埋钢板上。在合龙前,钢支座与箱梁底面和下横梁须面是焊连在一起的,以限制主梁结构在悬讲过程中的漂浮不稳;抗拉性能则由固定在钢支座和下横梁上的预应力钢绞线提供。 本桥在中跨合龙过程中采用以下措施解除拉压临时支座,在不影响中跨合龙段施工质量的前提下,完成斜拉桥的体系转换: 1.经过合龙前24小时的昼夜观测,选定温度较均匀的晚上10:00~第二天早上7:00稳定时段完成合龙段主要安装工作,并在主要焊缝完成后的本时段内迅速解除拉压临时支座; 2.在合龙口设置临时劲性骨架,以限制合龙口两端的竖向错动;设置斜交叉对拉葫芦,以限制合龙口的横向错动。在合龙段钢箱梁纵向两端,以及合龙口两侧主梁悬臂端设置抗拉压临时栓接加强件,以抵抗焊缝口的变化趋势; 3.在解除临时支座的抗拉作用时,先剖开钢支座与下横梁预埋板之间的焊缝,然后解除钢绞线。在解除钢绞线过程中,采用汽车压重的方法阻止主梁的突然上上浮。当钢绞线全部解除后,汽车逐步开走,使主梁缓慢上浮,以使主梁平稳完成其所积蓄的弹性能量的释放。 南京长江二桥南汊主桥于2000年7月9日清晨7:00全部解除临时支座而完成斜拉桥合龙的全部关键施工,标志全桥顺利合成,合龙误差几乎为零。南京长江二桥斜拉桥的施工控制系统,充分地保证了斜拉桥主梁悬拼、合龙、体系转换施工安全顺利进行。主梁全部合龙后,合龙段、全斜拉桥线形平顺、美观。根据桥面铺装前对斜拉桥的全面测试结果,理论计算和实测值对比情况是,主梁标高最大误差在6cm以内,轴线最大偏差在0.9cm以内,塔顶位移最大差值为0.7cm,索力最大误差在索力的5%以内。其他情况,索塔、主梁应力完全符合设计要求。对于如此特大跨度和复杂体系的斜拉桥,这样的成果达到了国内外斜拉桥施工的非常高的水平 九、3年短工期高标准施工质量的严格保证 南京长江二桥是在原南京长江大桥建成32年后建设的、南京市跨长江的第二座大桥。原南京长江大桥早已远远无法满足南、北交通的需要。南京长江二桥的建设任务迫在眉睫。原南京长江大桥举世闻名,南京长江二桥必须以高标准、高质量创立更佳声誉与之相对应因此,在短期内高标准完成南京长江二桥的建设是摆在桥梁建设者面前艰巨而光荣的任务。 南京长江二桥南汊主桥于1997年10月6日正式开工,于2000年7月9日全桥顺利合龙,主桥施工时间为2年9个月,主桥施工质量完全满足业主精品工程要求。在短期内使规模巨大的工程高质量地完成,除了采取加大投入、充分发扬拼搏精神等措施外,非常重要的还是要在工艺技术、施工组织方面深挖潜力。为此,在南京长江二桥南汊主桥的施工中,采用了许多新工艺、特殊工艺是成功的关键。 南京长江二桥南汊主桥下部构造即A标段施工的最终质量评定得分为97.6分,为国内最高水平,其上部构造即B标段施工还未被最终评定,但有关专家已给予了高度评价和肯定。南京长江二桥南汊主桥施工成果的取得,得益于先进的管理、先进的工艺技术和先进设备采用的巨大共同作用。来源:考试大-岩土工程师考试 |
|
我要投稿 新闻来源: 编辑: 作者: |
|
相关新闻 |
|
|
|
|
|