1Z101013 等值的计算
等值、现值、终值
◇等值:在资金运动过程中,由于资金的时间价值,不同时点的资金绝对值不等,但实际价值相等的现象。
◇现值(Present Value):发生在(或折算为)某一现金流量序列起点的现金流量价值,简称P 。
折现( Discounted Cash):把未来某时点的现金流量折算为起始时点值的过程。
◇终值(Future Value):发生在(或折算为)某一现金流量序列终点的现金流量价值,简称F。
等值计算
一次支付系列
1.一次支付终值公式
现在投资P元,收益率为i ,问n期期末投资本利和F为多少?
第一期期末本利和F1=P+P·i=P(1+i)
第二期期末本利和F2=F1+F1·i=F1(1+i)=P(1+i)2
第三期期末本利和F3=F2+F2·i=F2(1+i)=P(1+i)3
依上类推,第n期期末本利和Fn=P(1+i)n
即 F= P(1+i)n
又可写成 F = P(F/P, i, n)
2.一次支付现值公式
n期期末终值为F,收益率为i,问现在投资P为多少可满足要求?
又可写成 P= F(P/F,i,n)
等额支付系列
1.等额支付终值公式
若n期内每期期末等额投资为A,收益率为i,则n期期末本利和F为:
F=A(1+ i)n-1+ A(1+ i)n-2+ A(1+ i)n-3 ······
+ A(1+ i)3 + A(1+ i)2 + A(1+ i)1 + A
= A[1 +(1+ i)1 + (1+i)2 + (1+i)3 +······
+ A(1+ i)n-3 +(1+i)n-2 +(1+i)n-1 ] ···· (1)
式(1)中,中括号内各项为首项为1,公比为(1+ i),共有n项的等比数列,由等比数列前n项和公式,则 |