数字推理是我国目前所有公务员考试行政能力测试的必考题形之一,主要考察考生对数字和基本数列的敏感程度,也是反映考生基本思维能力的重要手段。增加这方面的练习也能有效的锻炼考生正确的思维方式,对图形推理和类比推理等一些题型的深度把握也有重要的意义。今天,我们就来讲一讲,数字推理中应用到的三种思维模式。
首先我们要说的是三种思维模式中的第一种,也是最基本的思维模式,那就是横向递推的思维模式。
横向递推的思维模式是指在一组数列中,由数字的前几项,经过一定的线性组合,得到下一项的思维模式。举个简单的例子。
5 11 23 47 ( )
根据横向递推的思维模式,思考方向是如何从5得到11,会想到乘2再加1,按照这样的思路继续向下推,发现,每一项都是前一项的2倍再加1,于是找出规律,这里应该填95。
再举一例。
2 3 5 8 13 ( )
这个数列是大家都比较熟悉的一个基本数列,和数列。这一类数列是前几项加和会得到下一项。这里应该填8于13的和,21。
我们总结一下横向递推思维模式的解题思路特点,在这种思维模式的指导下,我们总是习惯于在给出数列的本身上去找连续几项之间的线性组合规律,这也是这一思维模式的根本所在。
相较于横向递推思维模式,稍为复杂的就是纵向延伸的思维模式。他不再是简单的考虑数列本身,而是把数列当中的每一个数,都表示为另外一种形式,从中找到新的规律。我们一起来看一个例子。
1/9 1 7 36 ( )
注意这样一个数列,如果我们把36换成35的话,我们会发现,前后项之间会出现微妙的倍数变化关系,即后向除前项得到数列9 7 5 3,这里可以填上105。但这里时36的话就没有这样的倍数变化关系了。
那么我们可以用纵向延伸的思维模式,把数列中每一个数字都用另外一种形式来表述,即9-1 80 71 62 53,这里可以填125。
通过以上两种思维模式的简单介绍,我们可以总结出,实际上,数字推理这种题型的本质就在于考察数字与数字之间的位置关系,以及数字与数字之间的四则运算关系,考生只要能把握住这样两点,很多题目就都可以迎刃而解了。
当然,对于一个古典型数字推理来讲,横向与纵向只是其中最简单的最基本的位置关系,相对较为复杂的,是网状的位置关系,也就是我们接下来要谈到的,构造网络的思维模式。请大家看这样第一个例题。
2 12 6 30 25 100 ( )
我们先来观察一下这个题目,通过观察,可以很容易的看出,这里面每两项之间都有一个明显的倍数关系,我们可以根据这样的规律把原来的数列变成
2 12 6 30 25 100 ( )
6 5 4
实际上,如果后面有两个数需要我们填的话我们可以确定,它们之间应该是3倍的关系,但现在只需要我们写出下一个数字是多少。这个时候3倍就用不上了。
不过当我们把6 5 4写出来之后,无形之中就构建了一种网状结构,我们构造网状结构的目的也是为了丰富位置关系,位置关系丰富了,相应的可运用的四则运算关系也就丰富了。我们可以从上面的网状结构中看出,6和6、5和25、4和()的位置关系是相同的,考虑它们的四则运算关系,我们可以找到,他们可能分别是1次、2次、3次的变化,所以这里填上一个64可以说,是有道理的。
我们再看看有没有其他的规律。我们在上面的网状结构中还可以看到,6 12 6、5 30 25、4 100 ()都构成了位置相同的三角形,他们又有什么关系呢?两边相加等于中间,即这里还可以填96。
实际上,无论数字推理的题型如何变化,我们只要抓住位置和运算这两大关系,运用上面提到的三种思维模式,这一题型我们是可以把握得住的。