XXXX项目缓存方案总结 XXXX项目是目前在实际工作中正在做的事情,该项目是一个大型系统的内容管理内核,负责最核心的meta data的集中管理,性能有较高的要求,设计初期就要求能够支持cluster。项目使用Hibernate 3.2,针对开发过程中对于各种缓存的不同看法,撰写了本文。重点在于澄清一些hibernate的缓存细节,纠正一些错误的缓存用法。 一、hibernate的二级缓存 如果开启了二级缓存,hibernate在执行任何一次查询的之后,都会把得到的结果集放到缓存中,缓存结构可以看作是一个hash table,key是数据库记录的id,value是id对应的pojo对象。当用户根据id查询对象的时候(load、iterator方法),会首先在缓存中查找,如果没有找到再发起数据库查询。但是如果使用hql发起查询(find, query方法)则不会利用二级缓存,而是直接从数据库获得数据,但是它会把得到的数据放到二级缓存备用。也就是说,基于hql的查询,对二级缓存是只写不读的。 针对二级缓存的工作原理,采用iterator取代list来提高二级缓存命中率的想法是不可行的。Iterator的工作方式是根据检索条件从数据库中选取所有目标数据的id,然后用这些id一个一个的到二级缓存里面做检索,如果找到就直接加载,找不到就向数据库做查询。因此假如iterator检索100条数据的话,最好情况是100%全部命中,最坏情况是0%命中,执行101条sql把所有数据选出来。而list虽然不利用缓存,但是它只会发起1条sql取得所有数据。在合理利用分页查询的情况下,list整体效率高于iterator。 二级缓存的失效机制由hibernate控制,当某条数据被修改之后,hibernate会根据它的id去做缓存失效操作。基于此机制,如果数据表不是被hibernate独占(比如同时使用JDBC或者ado等),那么二级缓存无法得到有效控制。 由于hibernate的缓存接口很灵活,cache provider可以方便的切换,因此支持cluster环境不是大问题,通过使用swarmcache、jboss cache等支持分布式的缓存方案,可以实现。但是问题在于: 1、 分布式缓存本身成本偏高(比如使用同步复制模式的jboss cache) 2、 分布式环境通常对事务控制有较高要求,而目前的开源缓存方案对事务缓存(transaction cache)支持得不够好。当jta事务发生会滚,缓存的最后更新结果很难预料。这一点会带来很大的部署成本,甚至得不偿失。 结论:XXXX不应把hibernate二级缓存作为优化的主要手段,一般情况下建议不要使用。 原因如下: 1、 XXXX的DAO类大部分是从1.0升级过来,由于1.0采用的是hibernate 2.1,所以在批量删除数据的时候采用了native sql的方式。虽然XXXX2.0已经完全升级到hibernate 3.2,支持hibernate原生的批量删改,但是由于hibernate批量操作的性能不如sql,而且为了兼容1.0的dao类,所以很多地方保留了sql操作。哪些数据表是单纯被hibernate独占无法统计,而且随着将来业务的发展可能会有很大变数。因此不宜采用二级缓存。 2、 针对系统业务来说,基于id检索的二级缓存命中率极为有限,hql被大量采用,二级缓存对性能的提升很有限。 3、 hibernate 3.0在做批量修改、批量更新的时候,是不会同步更新二级缓存的,该问题在hibernate 3.2中是否仍然存在尚不确定。 二、hibernate的查询缓存 查询缓存的实现机制与二级缓存基本一致,最大的差异在于放入缓存中的key是查询的语句,value是查询之后得到的结果集的id列表。表面看来这样的方案似乎能解决hql利用缓存的问题,但是需要注意的是,构成key的是:hql生成的sql、sql的参数、排序、分页信息等。也就是说如果你的hql有小小的差异,比如第一条hql取1-50条数据,第二条hql取20-60条数据,那么hibernate会认为这是两个完全不同的key,无法重复利用缓存。因此利用率也不高。 |