【程序2】 # include # define SIDE_N 3 # define LENGTH 3 # define VARIABLES 6 int A,B,C,D,E,F; int *pt[]={&A,&B,&C,&D,&E,&F}; int *side[SIDE_N][LENGTH]={&A,&B,&C,&C,&D,&E,&E,&F,&A}; int side_total[SIDE_N]; main{} { int i,j,t,equal; for (j=0;j *pt[j]=j+1; while(1) { for (i=0;i { for (t=j=0;j t+=*side[i][j]; side_total[i]=t; } for (equal=1,i=0;equal&&i if (side_total[i]!=side_total[i+1] equal=0; if (equal) { for (i=1;i printf(“M”,*pt[i]); printf(“\n”); scanf(“%*c”); } for (j=VARIABLES-1;j>0;j--) if (*pt[j]>*pt[j-1]) break; if (j==0) break; for (i=VARIABLES-1;i>=j;i--) if (*pt[i]>*pt[i-1]) break; t=*pt[j-1];* pt[j-1] =* pt[i]; *pt[i]=t; for (i=VARIABLES-1;i>j;i--,j++) { t=*pt[j]; *pt[j] =* pt[i]; *pt[i]=t; } } } 从上述问题解决的方法中,最重要的因素就是确定某种方法来确定所有的候选解。下面再用一个示例来加以说明。 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n个物品的重量和价值分别存储于数组w[ ]和v[ ]中,限制重量为tw。考虑一个n元组(x0,x1,…,xn-1),其中xi=0 表示第i个物品没有选取,而xi=1则表示第i个物品被选取。显然这个n元组等价于一个选择方案。用枚举法解决背包问题,需要枚举所有的选取方案,而根据上述方法,我们只要枚举所有的n元组,就可以得到问题的解。 显然,每个分量取值为0或1的n元组的个数共为2n个。而每个n元组其实对应了一个长度为n的二进制数,且这些二进制数的取值范围为0~2n-1。因此,如果把0~2n-1分别转化为相应的二进制数,则可以得到我们所需要的2n个n元组。 【算法】 maxv=0; for (i=0;i<2n;i++) { B[0..n-1]=0; 把i转化为二进制数,存储于数组B中; temp_w=0; temp_v=0; for (j=0;j { if (B[j]==1) { temp_w=temp_w+w[j]; temp_v=temp_v+v[j]; } if ((temp_w<=tw)&&(temp_v>maxv)) { maxv=temp_v; 保存该B数组; } } } 三、递推法 递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。 【问题】 阶乘计算 问题描述:编写程序,对给定的n(n≦100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。 |