Binary Number System
In the binary number system, there are two dig-its:0 and I.The binary system is used for internal computer operations because only two signal levels are required, as opposed to decimal where ten signal levels would be necessary.Because a digit in the units position has a value of 0 or I,numbers greater than 1cause a carry to the next position, each position represents the base raised to a power. In base 10, the units position has a power of 100, the next position 10 l,and so on. Thus, a digit in any position other than the units position has a weight (value) depending on its positioning the number. A 4,for example, has a weight of 4 in the units position, 40 in the 10's position, 400 in the100's position and so on.
In binary, or base 2, the same reasoning applies. The units position has a power of 20, the next position21,and so on. As illustrated in Figure 1-5 a binary digit in any position other than the unit’s position has weight depending on its position in the number. A Has a weight of 1 in the units position, 2 in the 2'sposition, 4 in the 4's position and so on. Binary digits are called bits (a contraction of "binary digits").Therefore, the digit in the units position is called the east-Significant Bit (LSB) ,and so on until we reach the Most-Significant Bit (MSB).
翻译:
二进制数
在二进制数系中有两个数字0和1。二进制用于计算机内部操作,因为它仅需要两种信号电开这与十进制不同,那里将需要1I信号电平。因为在个位上的数字具有0和I的值,所以比I大的数将对下一位产生进位,每个位置代表基的若干次幂。在基为10中,个位具有10“次幂,下一位为10,次幂,等等。这样,在任意位置上(除了个位之外)的数字所具有的权(值)取决于此数字在该数中的位置。例如,4在个位上具有权为4,在十位上具有权40,在百位上具有权400,等等。
在二进制中(其基为2)应用同样的类推,个位具有权为2。,下一位具有权为2,等等。如图1-5所示,在任意位置上(除了个位之外)的二进制数字所具有的权,取决于此数字在该数中的位置。1在个位上具有的 为1,在2的位置上权为2,在4的位置上权为4,等等。二进制数字称为比特C bit它由”binary digits”缩写而成)。因此,在个位上的数字被称作“最低有效位”(LSB)等等,一直到我们到达“最高有效位”(MSB)为止。