即故障树的最小径集:
P1={Xl,X4) P2={XI,X5,X6)
P3={X2,X4) P4={X2,X5,X6)
如将成功树布尔化简的最后结果变换为故障树结构,则表达式为T=(Xl+x4)(xl+x5+x6)(x2+x4)(x2+X5+X6)形成了四个并集的交集,如用最小径集表示故障树则如图8-12所示。
3最小割集和最小径集在故障树分析中的应用
(1)最小割集表示系统的危险性
求出最小割集可以掌握事故发生的各种可能,了解系统的危险性。
每个最小割集都是顶上事件发生的一种可能,有几个最小割集,顶上事件的发生就有几种可能,最小割集越多,系统越危险。
从最小割集能直观地、概略地看出,哪些事件发生最危险,哪些稍次,哪些可以忽略,以及如何采取措施,使事故发生概率下降。
例:共有三个最小割集{X1)、{X2,X3)、{X4,X5,X6,X7,X8),如果各基本事件的发生概率都近似相等的话,一般地说,一个事件的割集比两个事件的割集容易发生,五事件割集发生的概率更小,完全可以忽略。
因此,为了提高系统的安全性,可采取技术、管理措施以便使少事件割集增加基本事件。就以上述三个最小割集的故障树为例。可以给一事件割集{X1)增加一个基本事件X ,例如:安装防护装置或采取隔离措施等,使新的割集为{X1、X9)。这样就能使整个系统的安全性提高若干倍,甚至几百倍。若不从少事件割集人手,采取的措施收效不大。
假设上述例中各事件概率都等于0.0l,即qI=q2 q3=q4 q5 q6=q7 q8 q9=0.01。
在未增加X 以前顶上事件发生的概率约为0.0101,而增加X9后概率近似为0.0002,使系统安全性提高了5O倍,在可靠性设计中常用的冗长技术就是这个道理。注意,以上是各事件概率相等时采取的措施。采取防灾措施必须考虑概率因素,若X,的发生概率极小,就不必考虑{X1)了。
(2)最小径集表示系统的安全性
求出最小径集可以了解到,要使顶上事件不发生有几种可能的方案,从而为控制事故提供依据。一个最小径集中的基本事件都不发生,就可使顶上事件不发生。故障树中最小径集越多,系统就越安全。
从用最小径集表示的故障树等效图可以看出,只要控制一个最小径集不发生,顶上事件就不发生,所以可以选择控制事故的最佳方案,一般地说,对少事件最小径集加以控制较为有利。
(3)利用最小割集、最小径集进行结构重要度分析。
(4)利用最小割集、最小径集进行定量分析和计算顶上事件的概率等。